
CME213 Final Project Final Report

Brad Huang

June 2016

1 GEMM Optimization

I implemented the optimization of GEMM as described in the Appendix of the final project’s
handout 1. With some optimization on unrolling the for loops and caching intermediate results,
the resulting running times are:

M N K Iteration cuBLAS myGEMM My Runtime / cuBLAS

800 1000 784 10 0.0468709 0.0857 1.828

800 10 1000 10 0.0043869 0.00665593 1.517

1600 2000 1568 100 3.26495 6.47858 1.984

1600 20 2000 100 0.160203 0.172668 1.078

When analyzing the first two runs under NVVP, 67.2% of GPU time is spent on my kernel, and
32.8% is spent on cuBLAS’ kernel. Let’s compare the utilizations of the two:

We can see that my implementation is still memory bound, while cuBLAS’ implementation is
not bound by memory or computation. Nonetheless, the memory access pattern for the optimized
GEMM is closer to cuBLAS’ GEMM. Compared to the unoptimized version (one thread for each
element in D), my optimized GEMM has a much higher shared memory bandwith, which is close
to that of cuBLAS:

1



Statistics or Bandwidth (GB/s) Naive GEMM Optimized GEMM cuBLAS

L1 Local Load 0 653.496 0
L1 Local Store 0 1.432 0

Shared Load 0 574.072 596.793
Shared Store 0 35.586 75.36

L1 Global 642.307 72.002 2.954
L1 Global 18.832 713.735 3.007

L2 Cache Read 116.101 52.974 3.007
L2 Cache Write 18.832 2.201 3.007

L2 Texture Cache N/A N/A 66.184

Global L2 Transaction/Access 114.3 32 16
Shared Transaction/Access N/A 8 N/A

From the latency analyses of the two kernels, we can see that, to further optimize this kernel,
we’ll have to increase the compute utilization - such as potentially removing some unnecessary
checks or paralleling the method further (since each thread handles 16 elements in D, the paral-
lelization is not as good). Or maybe include the use of texture memory, as the memory statistics
of the cuBLAS kernel shows that it is using texture memory.

The left is my optimized GEMM, and the left is cuBLAS.

2



2 Neural Network Optimization

2.1 MPI Optimization

I did not make any changes to the MPI part of the NN implementation because my method is the
one with the least memory transactions I can think of. I broadcast all of W T , b and XT , yT to each
process before the training starts, and copy all of them into GPU memory. During each iteration,
I compute the ranges of samples/columns that each process should be responsible for. This way
each process can directly index into their GPU copies of XT and yT (since the matrices are column
major) to get the samples without needing to scatter the data every time. After feedforward and
backpropagation for each process, I only have to copy the gradients, two copies of dW and db,
from GPU tp CPU, perform an MPI Allreduce() on the gradients, and then copy the reduced
gradients back to the GPU to update each process’ own GPU copies of W and b. I think this is the
minimal amount of memory transfer, both between processes and between CPU and GPU, that we
can get for this MPI problem.

2.2 CUDA Kernel Optimization

As outlined in my previous report, I have chosen the four kernels occupying the most GPU time to
optimize. These are the statistics from the previous report:

Wrapper Kernel Time Compute Util Memory Util Main Stall Reason

myAllocGEMM simpleAllocGEMM 74.3 30 65 Pipe Busy

computeZ gpuVecGEMM 18.7 48 25 Pipe Busy

columnSums gpuColSums 4.9 8 5 Execution Dependency

transpose gpuTranspose 1.7 12 65 Memory Dependency

2.2.1 myAllocGEMM

Since the simpleAllocGEMM is very similar to GEMM and the only difference is that the result
is not stored in place, I simply transferred the implementation of myGEMM to the kernel.

The resulting kernel is still memory bound, with slightly lower compute utilization. The reduced
compute utilization comes from the fact that each thread now computes 16 elements in the result-
ing matrix, while previously one thread handles only one element, leading to higher parallelization.
However, the kernel now has a much higher L1/Shared memory bandwidth because of the intro-
duction of shared memory in the kernel.

3



The main stall reason is now memory dependency and execution dependency. The memory
dependency may be due to the increased use of arrays in the kernel and the use of shared memory.
Execution dependency probably comes from more branching and synchronization required for the
kernel.

2.2.2 computeZ

similar to myAllocGEMM, I also transferred the implementation of myGEMM to the kernel gpuVecGEMM.

The result is very similar to the previous section, except that the memory utilization is even
higher for this kernel - which is reasonable since the memory access to the matrix C in the previous
kernel is more expensive than accessing a vector b in this kernel.

2.2.3 columnSums

I adopted the reduction code presented in lecture to optimize this kernel. For each column, I allo-
cated one 256x1 block for it. Each of the 256 threads compute a partial sum based on the length
of the column, and then I used a shared memory array to compute the final total sum.

The compute and memory utilizations are two to five times higher than those of the previous
kernel, although the kernel is still latency bound. The reason is that the task is inherently smaller
and requires fewer threads to perform it, so utilization of the full GPU is unlikely.

The main stall reason has shifted from execution dependency to memory dependency. The op-
timized kernel has more parallelization, so the execution dependency is decreased, and memory
dependency prevails.

4



2.2.4 transpose

I adopted the transpose code presented in lecture here, except that the global memory reading and
writing has been modified to be coalesced when the matrix is using column major storage.

The compute and memory utilizations are higher than those of the previous kernel by about 10%,
although the kernel is still memory bandwidth bound.

2.3 Overall Changes

The overall runtime of the neural network is only improved very slightly, around 10% in speedup,
with the kernel optimizations:

Grading Mode CPU Runtime GPU Runtime Speedup Previous Speedup

1 118.584 41.8269 2.833 2.563
2 29.7955 11.5513 2.579 2.423
3 23.8216 2.06716 11.524 8.945

However, the optimization does show up in the NVVP kernel analysis. The top seven kernels
occupying the most time are:

Wrapper Kernel Time (%)

myAllocGEMM allocGEMM 55.8
computeZ gpuVecGEMM 41.0
transpose fastTranspose 2.3
elemMults gpuElemMults 0.4
mySigmoid gpuSigmoid 0.3

columnSums gpuColSums 0.2
matAdd gpuMatAdd 0.1

The optimization priorities of allocGEMM and gpuVecGEMM are now much higher than those of
the rest kernels. The kernels are called the most number of times and are responsible for the most
complicated computations among all of the kernels, so it is natural that they occupied the most
time and have the highest priorities. But gpuColSums and fastTranspose have been optimized
enough that they are now not more prioritized than the other kernels. The increased percentage of
transpose time is only due to the larger reductions in the other optimized kernels.

5


	GEMM Optimization
	Neural Network Optimization
	MPI Optimization
	CUDA Kernel Optimization
	myAllocGEMM
	computeZ
	columnSums
	transpose

	Overall Changes


